
Coordination Polyhedra with Nine and Ten Atoms 

L. D. Brown and J. A. Ibers, Inorg. Chem., 15, 2788 (1976). 
N. Ahmad, S. D. Robinson, and M. F. Uttley, J.  Chem. Sac., Dalton 
Trans., 843 (1972). 
Supplementary material. 
R. J. Doedens and J. A. Ibers, Inorg. Chem., 6 ,  204 (1967). 
Those data that were initially found to have I < 3u(n were rescanned 
with a 20-s background counting time and the results of the two scans 
were summed. For intensity data collected between 110 and 125’ in 
28, the background counting time was increased to 20 s at the beginning 
and end of each scan, and no rescans were made. 
In addition to various local programs for the CDC 6400 computer, 
programs used in this work include local versions of Zalkin’s FORDAP 
Fourier program, Busing and Levy’s ORFFE function and error program, 
and the AGNOST absorption program (which includes the Coppens- 

(30) 

(31) 
(32) 

(33) 

Inorganic Chemistry, Vol. 16, No. 11, 1977 2735 

Leiserowitz-Rabinovich logic for Gaussian integration). Our full-matrix 
least-squares program NUCLS, in its nongroup form, closely resembles 
the Busing-Levy O R F U  program. The diffractometer was run under 
the Vanderbilt disk system as described by P. G. Lenhert, J.  Appl. 
Crystallogr., 8, 568 (1975). 
D. T. Cromer and J. T. Waber, “International Tables for X-Ray 
Crystallography”, Vol. IV, Kynoch Press, Birmingham, England, 1974, 
Table 2.2A, D. T. Cromer and D. Liberman, J .  Chem. Phys., 53, 1891 
(1970). 
S. J. La Placa and J. A. Ibers, Acta Crysrallogr., 18, 511 (1965). 
In order to simplify the stereochemical sketches, in I-X only the 
N-CH-N skeletons of the formamidinato ligands are given. 
L. D. Brown and J. A. Ibers, Inorg. Chem., 15, 2794 (1976). 

Contribution from the Faculty of Science, 
University of Regina, Regina, Saskatchewan, Canada S4S OA2 

Coordination Polyhedra with Nine and Ten Atoms’ 
B. E. ROBERTSON 

Received May 18, 1977 AIC70353W 

An irregular nine-coordinate polyhedron may be characterized by comparing it to two polytopal nine-coordinate polyhedra, 
the D3,, tricapped trigonal prism and the C4u monocapped square antiprism. An irregular ten-coordinate polyhedron may 
be characterized by comparing it to two polytopal ten-coordinate polyhedra, the D4d bicapped square antiprism and a C2u 
decatetrahedron which is closely related to the Hoard dodecahedron. A sensitive indication of polyhedral type is provided 
by the set of dihedral angles formed by the two faces meeting at each edge of the polyhedron (the 6 parameters introduced 
by Porai-Koshits and Aslanov). The set of 6 angles for the aforementioned polytopes have been calculated and they show 
that the transition from the tricapped trigonal prism to the monocapped square antiprism is characterized by a change 
in the 6 a t  one edge of the former from ca. 26.4 to 0’ in the latter. The transition from the bicapped square antiprism 
to the decatetrahedron is characterized by a change in the 6 a t  two edges in the former from ca. 30.9 to Oo in the latter. 

Introduction 
To a first order of approximation, the average quantity of 

discussion of a coordination polyhedron appears to be inversely 
proportional to the number of atoms in the coordination sphere. 
There exist several plausible explanations for this phenomenon, 
some of which follow. 

Polyhedra with higher coordination number often contain 
chelating ligands which are themselves asymmetric and which 
pack to form low-symmetry space groups. The point groups 
of some large symmetric coordination polyhedra, such as the 
icosahedron and derivatives thereof, are not consistent with 
the demands of translational symmetry, and therefore must 
become distorted in order to be tessellated. Therefore, in the 
solid state, such polyhedra often show either low point 
symmetry or none at all. 

In the event that the coordination polyhedron does not 
approximate to one with a nontrivial point symmetry operation, 
it is generally assumed that there is little to be gained from 
detailed consideration of its geometry. Coordination polyhedra 
of larger coordination number are often identified by inves- 
tigators solely by inspection. It would therefore seem relevant 
to add the somewhat trivial remark that such polyhedra are 
not easily visualized. 

Those authors of crystallographic reports who consider the 
distortions of a polyhedron from the appropriate reference 
polyhedra (polytopes) have used several related approaches. 
Day and HoardZ discussed the distorted monocapped square 
antiprismatic coordination polyhedron in ThT4(CH3)2NCH0 
(where T is the tropolonato ligand C1H5O2) in terms of the 
less symmetric stereoisomers allowed by the bidentate tro- 
polanato ligands. Many authors have ado ted a criterion first 

quantitative assessment of polyhedral type. This criterion 
makes use of the set of dihedral angles, 6, formed by the pairs 

suggested by Porai-Koshits and Aslanov P which allows for a 

of faces that meet at each edge of the polyhedron. Porai- 
Koshits and Aslanov, in their original discussion, presented 
reference data only for eight-coordinate polyhedra. Muet- 
terties and Guggenberger4 have extended the analysis to lower 
coordination polyhedra. At that time they also indicated their 
intention to pursue the analysis of nine-coordinate polyhedra, 
We recently found ourselves in need for some basis for the 
discussion of a nine-coordinate polyhedron and therefore 
undertook the analysis of both nine- and ten-coordinate 
polyhedra. Since then the results of Guggenberger and 
Muetterties have appeared in prints5 However, the approach 
we have taken here is a somewhat different one than that of 
the latter authors, 
Identification of Polyhedra 

The most straightforward basis for the comparison or 
identification of polyhedra is the number of faces meeting at 
each vertex (the order of the vertices) and the positions of the 
vertices of given order in the polyhedron with respect to each 
other. In practice, this technique has at least two shortcomings 
if no other parameters are considered: (i) it does not give any 
estimation of the degree of distortion from the idealized 
polyhedron which is approximated, and (ii) in order to properly 
count the faces meeting at a vertex it is first necessary to decide 
if four or more vertices are sufficiently near to the least-squares 
plane through them that they should be considered as forming 
a nontriangular face. It is not possible to give an a priori lower 
limit for these out-of-plane distances which will be universally 
applicable. 

In order to obtain further information as to the best de- 
scription of a polyhedron and, in addition, information con- 
cerning the nature of the distortions from ideal geometry, one 
may also consider the relative lengths of the edges of the 
polyhedron and the angles subtended at the central cation. 
However, edge lengths tend to be insensitive to changes in 



2736 Inorganic Chemistry, Vol. 16, No. 11, 1977 

Table I. Principal Reference Polyhedra 

B. E. Robertson 

Table 11. Edge Lengths (A) of Nine-Coordinate Polyhedra 
TTPa M S A P ~  

Edge n = l  n = 6  n = -  n = l  n = 6  n=== 
No. 

4 
5 
6 
7 

8 

9 

10 
11 
12 

r d  regular tetrahedron, D,h square 
D,h trigonal bipyramid, C,, tetragonal pyramid 
Oh regular octahedron, D,h trigonal prism 
C,, monocapped octahedron, C,, monocapped prism, 

D,d square antiprism,a D Z p  Hoard dodecahedron,b 

D a h  tricapped trigonal prism, C,, monocapped 

D,d bicapped square antiprism, C,, decatetrahedronC 
C,, monocapped pentagonal antiprism 
rh regular icosahedron, Oh cuboctahedron, Td truncated 

D s h  pentagonal bipyramid 

C,, bicapped trigonal prism 

square antiprism 

tetrahedron 

a Also known as the Archimedian antiprism. Also known as 
Discussed the bisdisphenoid and the triangular dodecahedron. 

in text. 

polyhedral shape. The criterion of Porai-Koshits and Aslanov 
was mentioned earlier as a useful test of polyhedral type. 
Usually one or two of the 6 angles (the 6' angles) undergo large 
changes as the polyhedron is altered continuously from one 
polytope to another. Furthermore, when four vertices approach 
the formation of a rectangular face, the 6' angle at one of the 
diagonals of the face approaches zero which enables such faces 
to be quickly identified and which also provides a quantitative 
estimate of the deviation from planarity if the four vertices 
are not exactly coplanar. 
Reference Idealized Polyhedra 

Assuming that identification is a valuable prerequisite to 
the rationalization of a polyhedron in terms of factors in- 
fluencing the positions of the atoms in it, we shall attempt to 
illucidate the important polytopal polyhedra with nine and ten 
vertices and present data which will enable the identification 
of a polyhedron with nine or ten atoms which has been found 
by crystallographic investigation, when such identification is 
possible and meaningful. 

Hoard and Silvertod have listed the contributions to the 
energy of discrete eight-coordinate polyhedra as (1) direct 
interaction of the central atom with its ligands, (2) mutual 
repulsions between the ligands, (3) the effect of nonbonding 
electrons in the valence shell of the central atom, and (4) 
constraints associated with the geometry of multidentate 
ligands. 

For each coordination number several highly symmetric 
polyhedra exist and each may be treated as a polytope for that 
coordination number. Many are highly improbable from the 
aforementioned considerations and would only be expected to 
be found in cases of unusual packing or directionality of the 
orbitals of the central atom. In order to form a basis for a 
discussion of the stereochemistry of higher coordination 
molecular complexes, we will focus our attention therefore only 
on those polyhedra which will appear favorable from the simple 
energy considerations embodied in the first two items listed 
by Hoard and Silverton.6 

Day and Hoard2 have chosen as a more quantitative cri- 
terion for judging the relative merits of polyhedra the ratio 
of the cation bond lengths to the minimum ligand-ligand 
separations, with lower values of the ratio being more fa- 
vorable. Muetterties and Guggenberger4 have added the 
observation that the energetically most favorable polyhedra 
tend to have faces which are triangular. Both points of view 
acknowledge the importance of the three regular polyhedra 
with equilateral triangular faces, namely the tetrahedron, 
octahedron, and icosahedron. A list of the more important 
reference polyhedra and their point symmetries is given for 
coordination numbers four to twelve in Table I. 

By definition, regular polyhedra contain only one set of 
symmetry related vertices, edges, and faces. Highly symmetric 

a 1.407 1.422 1.491 1.583 1.598 1.624 
b 1.407 1.422 1.491 1.318 1.319 1.329 
c 1.136 1.139 1.155 1.119 1.130 1.148 
d 1.231 1.218 1.155 1,318 1.319 1.329 
e 1.136 1.139 1.155 1.129 1.131 1.148 
f 1.136 1.139 1.155 1.183 1.175 1.148 
g 1.231 1.218 1.155 1.183 1.175 1.148 

a Edges are defined in Figure 1. Edges are defined in Figure 
2. 

Figure 1. Edges of the tricapped trigonal prism. Equivalent edges 
are related by the C,, symmetry of the polyhedron intermediate 
between the TTP and the MSAP. 

but nonregular polyhedra contain more than one set of 
symmetry related edges. In the process of designing the 
polytopes it is necessary to establish the relative lengths of the 
edges belonging to each symmetrically equivalent set of edges. 
In the event that the vertices are also not all equivalent, the 
relative lengths of the radius vectors to each of the sets of 
symmetrically equivalent vertices must also be established. We 
may avoid the necessity for choosing some criterion for es- 
tablishing the relative lengths of the radius vectors by working 
only with points on a sphere polyhedra; Le., all radii will be 
set to unity. In order to remove the effects of unequal bond 
lengths on the 6 angles, the sample polyhedra will also be 
reduced to points on a sphere polyhedra by moving each vertex 
along the radius vector to the surface of a sphere. This 
procedure has recently been used by Kouba and Wreford' with 
favorable results. It will also allow an analysis of the more 
distorted polyhedra such as those arising in the case of 
chelation, lattice structures, or the presence of more than one 
atomic species among the coordinating atoms. 

Muetterties and Guggenberger4 have used an energy 
minimization technique based on R,;" repulsion potentials 
(where R ,  is the separation of atoms i and j )  in order to 
establish the coordinates of their reference polytopes, and thus 
the relative edge lengths. This procedure has been discussed 
in detail by Claxton and Bensones In the case of eight-co- 
ordination Porai-Koshits and Aslanov3 fixed the maximum 
possible number of sets of equivalent edges at the same 
minimum length and then allowed the remainder to be ad- 
justed accordingly. This corresponds to the aforementioned 
energy minimization procedure in the limit as n becomes 
infinite. For the sake of brevity, we shall refer in the future 
to the latter as the n = m case. 
Nine-Coordination 

Based on considerations discussed in the previous section, 
there are two important nine-coordination polyhedra which 
are the tricapped trigonal prism (TTP) with D3h symmetry and 
the monocapped square antiprism (MSAP) with C,  symmetry. 
The geometries of both polyhedra were determined with re- 
pulsive potentials R,Yn for several values of n. Table I1 lists 
the edge lengths for n = 1, 6 ,  and m, The edges are labeled 
in Figures 1 and 2. The algorithm of Claxton and Benson* 
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Figure 2. Edges of the monocapped square antiprism. 

Figure 3. Stereoscopic representation of the tricapped trigonal prism 
(TTP). 

Figure 4. Stereoscopic representation of the monocapped square 
antiprism (MSAP). 

Figure 5. Schematic representation of the general nine-coordinate 
polyhedron with three capped rectangular faces. 

were usedg except in the case of n = 00 where for the TTP the 
c, d, e , f ,  and g edges were set equal and for the MSAP the 
c, e,fi and g edges were set equal. The coordinates were then 
determined using analytical geometry and spherical trigo- 
nometry. Details of these calculations are a~a i l ab le .~  

Figures 3 and 4 show stereographic projections of the TTP 
and MSAP, respectively.'O Equivalent vertices are labeled with 
the same letter. The sequencial numbering of the vertices 
follows the rules suggested by Muetterties and Wright." In 
the case of the TTP the a and b edges are symmetrically 
equivalent, as are the d and g edges and the e , f ,  and c edges. 
In the case of the MSAP, the f and g edges and the d and b 
edges are symmetrically equivalent. 

The lower square of the MSAP is formed from the c edges 
of the TTP. The upper square is formed from the b and d 
edges. The correspondence between edges and the Czo 
symmetry of the polyhedron intermediate between the two 
polytopes is illustrated in Figure 5 .  The face of the TTP 
capped with e edges becomes the single capped face of the 
MSAP. 

The calculated edge lengths, including those given in Table 
11, change monotonically with the index n, as n varies from 
1 to 00, The changes are small and of a similar order of 
magnitude as the changes which characterize the change from 
the TTP to the MSAP. 

The 6 angles were also calculated for the same six polyhedra 
and are listed in Table 111. These are clearly more sensitive 
to small changes in the geometry of the polyhedron, partic- 
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Table 111. 6 (deg) for Nine-Coordinate Polyhedra 

TTP MSAP 

Edges n = l  n = 6  n = -  n = l  n = 6  n = -  
a 21.3 26.4 21.8 0.0 0.0 0.0 
b 21.3 26.4 21.8 38.2 31.6 36.2 
c 59.4 59.6 60.8 69.1 69.1 68.4 
d 41.5 41.6 48.2 38.2 31.6 36.2 
e 59.4 59.6 60.8 58.9 59.0 59.1 
f 59.4 59.6 60.8 52.1 53.0 53.1 
g 41.5 41.6 48.2 52.1 53.0 53.1 

ularly those changes associated with the conversion from a 
TTP to an MSAP. The 6 associated with the a edge goes to 
zero for the MSAP and in the case of a distorted TTP, the 
smallest 6 may usually be assigned to the a edge. It is therefore 
the most convenient single parameter with which to identify 
the polyhedron, i.e., the 6'. 

Table I11 gives the 6 angles for a number of nine-coordi- 
nation polyhedra selected from the literature. All of the bond 
lengths to the central atom have been set to unity before 
calculating the 6 angles. 

Guggenberger and Muetterties5 list a number of structures 
which contain nine-coordinate polyhedra with full D3h sym- 
metry or which approximate closely to full D3h symmetry. 
Their 6 angles differ slightly from those presented here because 
they have not reduced their polyhedra to points on a sphere 
polyhedra as we have done. For these polyhedra, however, 
the variations in bond length are not large and the differences 
in the 6 angles as obtained by the two approaches are therefore 
not large. 

An average of the 6, and 66 (vicinal parallel to the threefold 
axis, using the terminology of Guggenberger and Muetterties) 
for six of their coordination polyhedra with an approximate 
threefold axis gives 25.6O, remarkably close to the value of 
26.4O for the n = 6 TTP as given in Table 111. In polyhedra 
which form a part of a lattice structure, however, the variations 
from the average may be large, as exemplified by the poly- 
hedron around Th( 1) in RbTh3FI3l2 and the polyhedron 
surrounding the site fully occupied by Nd in NaNdF4,13 A 
more extreme example, still showing D3h symmetry, is the 
polyhedron in the structure of P1-K2UF6, which has been 
redetermined by Brunton.14 

These variations in the 6 angles correspond to changes in 
the length of the a and b edges in relation to the length of the 
g and d edges which form the end faces of the TTP. In 
general, as the two atoms joined by an edge of the polyhedron 
are moved apart, two atoms on opposite sides of the edge find 
space to move toward each other, thus decreasing the 6 at that 
edge. Therefore, an approximate reciprocal relation exists 
between a 6 and the length of the corresponding edge, or, the 
angle subtended by that edge at the central atom. The large 
variations in the 6 angles in the case of lattice structures would 
warn against the temptation to infer the nature to repulsive 
potentials from the 6 angles in such cases. 

As we move to structures that do not approach closely to 
threefold symmetry, the principal distortions may be toward 
the parameters of the MSAP as in NH4Y(Cz04)-2H2015 and 
Nd2(C3H204)3-6H20.16 However, another important distortion 
may also be present as manifested in the structures of 
Nd( OCOCH2NHCH20CO) C1-3H2O1' and Prz( H20)4(  C4- 
H6N04)2(C4H5N04)C12~3Hz01s by the unequal 6b. The 86 for 
the MSAP are equal and therefore this distortion in low- 
symmetry ninecoordinate polyhedra is not a distortion toward 
the geometry of the MSAP. We note that these structures 
involve some degree of chelation. 

In more physical terms, the two ends of the TTP tilt from 
being coplanar in the TTP in order to form the MSAP. This 
tilt has been proposed by Guggenberger and Muetterties5 as 
an important measure of polyhedral type. In the case of lower 
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a d a 

Figure 6. Schematic representation of the highly distoi ted p o l y b e d ~ ~ ~  

symmetry or intermediate polyhedra, another tilt, about an 
axis at right angles to the first, seems to be C Q I X ~ ~ O ~  and may 
be easily confused with the first tilt. 

iscreet coordination polyhedra with the full symmetry C4& 
of the MSAP are not known but the structural type sepre- 

Cl19 contains an MSAP surrounding the lan- 
thanide ion which is part of a c o n t i n u ~ ~ s  lattice and which 
has CdU symmetry. The 6 angles are in reason~ble agreement 
vith those in Table IHI for 

symmetry. Three of the c 

i R  NdOHCO3. 

The polyhedron in Nd2(C4H 

and one of these is a sulfur atom. Nevertheless, it 
h a t e s  remarkably close to the idealized MSAP. Table 

IV contains three examples of distorted MSAP where the 
major distortion brings the polyhedron t. 

the TTP. These are Gd(MOCM 

some degree of chelation. 

Table IV show a principal distortion which is not along a 
reaction path to the parameters defining the TTP. In 
ThF8(NH4)4,23 KU2Fg,24 and the second polyhedron of 
RbTh3Fi3,12 the 6b differ by 16' or more. This is then the 
analogous distortion to that which w u r s  in the TTP and which 
also results in unequal db. Chelation is not present in these 
latter cases and it would therefore appear that both packing 
and chelation may give rise to this category of distortion. In 
the polyhedron surrounding Nd(l)  in Nd0HG&B325 and in 
Cs%J6F2526 a third category of distortion is evident and arises 
from the capping atom being displaced toward one of the edga 
of the upper square of the MSAP and away from the oppsite 
edge. 

edra in Table IV, from the structure of 
possess such distortions that it seems hardly 

to label them as being related to either of the two 
nine-coordination. However, the number of such 
ted polyhedra which occur in the literature, even 

in the presence of unusual chelation or packing, is surprisingly 
small. Furthermore, the arrangement of the positions of the 
vertices in one of them is the same as in that of the p ~ ~ y ~ e d r ~  
intermediate between the reference polyhedra as shown in 
Figure 5 ,  is., three vertices of fourth order separated by three 
pairs of vertices of fifth order with the six f i f t ~ " o r ~ e r  faces 
joining into two groups of three each. The remarkable 
consistency of the connectivity of the polyhedra with nine 
vertices as found in nature would suppr t  the credibility of the 
analysis proposed here. 

nectivity of the polyhedron surrounding Nd(3) in 
325 is  the exception l o  the foregoing generalkation. 

Nevertheless, the distortions may still be understood in terms 
of the intermediate polyhedron. Figure 6 shows the edge 
labeling for this polyhedron. Two of the capping atoms of the 
TTP are sufficiently removed from the centers of the rec- 
tangular faces which they occupy in the TTP toward the third 
capping atom (forming the e edges in Figure 4) that they form 
the new edges k and the b edges disappear or must be assigned 
a. negative 8 .  

The radius to edge length ratio is only meaningful when yd 

= to, where for the TTP and the MSAP it is 0.866 and 0.871, 
respectively. Also the MSAJ? has one nontriangular face 

ther polyhedra which are labeled 

3 3 

Figure 8. Stereoscopic view of the Hoard dodecahedron. 

7 7 

Figure 9. Stereoscopic view of the clecatetrahedron (DTM) oriented 
similarly to the Hoard dodecahedron. 

whereas the TTP has none. When a repulsive potential energy 
function is used to fix the geometry, the TTP is also favored 

the TTP has 0.15% less 

We might then expect some p r e f e r ~ ~ c e s  in nature for 
p o ~ ~ ~ e d r a  which a p p r o x ~ ~ a ~ e  the TTP over those which 
approx~ma~e the MSAP. In th survey of nine-coorairrate 

uetterties5 have inc!uded 
mostly polyhedra which approximate to the full symmetry of 

P or MSAP. They conclude that in such cases the TIT 
indeed QCCUFS more often than the SAP. The sample of the 
~ ~ ~ y h e d r a  contained in Table IY not intended eo be rep- 
resentative of all known nine-coo 
thaless, from the cursory survey of 
in order to c o n s ~ r ~ c t  Table IV, w 

ra with large distortions are included in the sample, 
a which resemble the SAP are e ~ ~ ~ n ~ ~ r ~  roughly 

with the same f r e ~ u e ~ c ~  as those which resenable the TTP. 

ternat~ve fobs ~ e n ~ ~ ~ r d ~ n a ~ ~ o n  
Such a ~o~yhedron  would seem un 
necessity, have two vertices which exnter into the fOrmat~Q~ of  
only three €aces, a situation which would be unlikely to occur 
in a h ~ g ~ - c o o r d ~ ~ a ~ i ~ ~  ~ ~ ~ y h e ~ r ~ n .  NQ such polyhedron has 
been reported to date. 

Another important ~ e n ~ c o ~ ~ d i n a ~ e  p o ~ y ~ ~ e d r ~ n  does indeed 
discussed the r ~ ~ a ~ ~ o n ~ h i ~  of this 
ecahedron (Figure 8) which was 
r t ~ n , ~  The Hoard dodecahedron 

may conveniently be described as the figure formed from two 
~ n ~ e r p e n e ~ r a ~ i ~ ~  trapezoids, the short edge of each ts  
joining A-type vertices and the long edges joining 

splitting two B-type vertices belonging to the same trapezoid 
to form the four vertices labeled C in Figure 9. This creates 
two new equilateral fwes and the faces now formed between 

Ver~kXS. The n%W ~ ~ ~ ~ ~ Q Q r $ ~ n a ~ e  pQ~y~edr5n  is cresleed by 
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Cornpd Dihedral angles (8 ), deg 

Point 
sym- 

metry Chelation TY Pe Ref 

RbTh,F,, polyhedron around Th(1) a = 32.1; b = 30.1; c = 50.5,Sg.g; d = 42.6,59.8; C, None TTP 12 
e = 59.8, 63.1; f = 59.2,60.0;g= 40.9, 52.1 

e=60.8 ,62 .4 ; f=60.8 ,  62.4;g=48.5 

e = 62.9; f = 62.9;g = 48.7 

e =  60.8, 61.1; f =  55.3, 61 . l ; g=  46.8, 52.5 toward MSAP 

d=37.6 ,54 .6;e=53.8 ,6OS7,62 .4 ,69 .8;  C.3 toward MSAP 
f=46.5,58.4,60.9,63.4;g=43.0,43.9,51.8,54.5 

d=35.0 ,53 .9;e=48.5 ,53 .9 ,55 .5 ,66 .1;  C, one bidentate 
f=53.1 ,54 .8 ,55 .0 ,57 .6;g=40.8 ,46 .4 ,51 .2 ,55 .3  

d = 43.8, 43.9; e = 52.0, 59.2, 65.2,69.2; 

f = 54.4;g = 54.4 

e =  54.8, 56.1; f =  51.4, 53.9;g= 52.6,52.8 
a=  8.6; b = 36.9, 38.9; c = 63.4, 65.6, 68.4, 70.0; 

d =  36.8, 45.6;e= 56.6,57.1, 58.0,61.5; C, toward TTP 
f=49 .6 ,  53.3, 53.5, 57.5;g=47.0,50.6,54.5 

d=33.8 ,45 .4;e=52.6 ,55 .3 ,58 .4 ,71 .9;  cs toward TTP 
f=49 .4 ,  53.0, 56.1,61.l ;g=45.0,  51.9,52.4,58.7 

d=36.0,46.3;e=47.6,48.4,55.6,65.8;  toward TTP 
f=51.5 ,52 .9 ,54 .9 ,56 .2;g=42.8 ,45 .0 ,56 .6 ,58 .2  

NaNdF, a = 18.9; b = 18.9; c = 60.8, 62.4; d = 48.5; Csh None TTP 13 

pl-K2UF6 a = 14.6; b = 14.6; c = 62.9; d = 48.7; D , h  None TTP 14 

NH,Y (C20,).2H,0 a =  15.4; b = 27.4; c = 61.7, 62.5; d = 44.7; C, None TTP, distorted 15 

Nd2(C,H,0,),-6H,0 a = 19.6; b = 28.8, 34.4; c = 50.6,58.6, 61.9, 65.6; Near Two bidentate TTP, distorted 16 

Nd(OCOCH,NHCH,0CO)C1~3H20 a = 18.5; b = 29.6, 43.4; c = 60.5, 64.4, 67.6, 70.3; Near One tridentate, Distorted TTPa 17 

P~,(H,O),(C,H~NO,)Z- a = 17.3; b = 23.5, 44.0; c = 56.2, 58.2, 58.8,68.4; Near One bidentate Distorted TTP 18 
(C,H,NO,)Cl, *3H,O CS 

f = 48.9, 50.1, 58.7,67.3;g= 39.8,49.2, 50.8,57.2 
LaOCl a=0 .0 ;  b = 3 4 . 1 ; ~ = 7 2 . 6 ; d = 3 4 . 1 ; e = 5 6 . 3 ;  C,, None MSAP 19 

Nd, (C,H4O,S)Cb4H,O a = 2.1; b = 38.0, 38.5; c = 70.9, 78.7; d =  36.9; C, One tridentate MSAP 20 

Gd(HOCH,COO), Near Three bidentate MSAP, distorted 21 

TH(C,H,Oz),((CH,)zNCHO) a = 6.3; b = 30.2, 38.2; c = 62.6, 62.8,69.3, 73.0; Near Four bidentate MSAP, distorted 1 

Ndz(C,H,0,),.8HzO a = 8 , 9 ; b = 3 1 . 7 , 4 1 . 8 ; ~ = 6 6 . 2 , 6 6 . 9 , 7 4 . 1 , 7 7 . 0 ;  C, Two bidentate MSAP, distorted 22 

ThF, (NH,), a = 5.2; b = 25.2, 45.7; c = 64.0, 66.1, 66.3, 72.8; Near None Distorted MSAP 23 

KUZF, a =  9.5; b =  26.5,46.5;c=62.0, 62.2,66.6,66.7; Near None Distorted MSAP 24 

d=36.3,45.6;e=54.0,54.8,59.5,68.5;  CS 

d =  39.9,45.1;e=55.1, 56.4,62.4, 66.3; c, 

f=50.9 ,51 .5 ,55 .1 ,58 .9;g=43.8 ,51 .3 ,54 .6 ,56 .2  

f=51.5,52.8,55.9,56.0;g=48.1,48.2,52.4,52.8 
RbTh,F,, polyhedron around Th(2) a =  9.6; b = 21.0, 47.4; c = 60.4, 63.1, 66.0, 75.2; C, None Distorted MSAP 12 

d = 32.7,48.7; e = 53.4, 55.1, 58.3,69.2; 
f=48 .2 ,  5 3 . 1 , 5 5 . 2 , 6 4 . l ; g = 3 9 . 1 , 5 1 . 5 , 5 6 . 3 , 5 8 . 7  

d =  12.9,46.1;e=49.3,52.3,  71.1, 72.7; 
f=39.2 ,45 .4 ,  61.1, 62.9;g=48.6,51.9,61.0,61.1 

e = 43.4, 67.1; f = 52.5,53.3;g=45.3,55.6 

d =  1.1,43.4;e=49.5,  51.2,70.9, 80.4; 
f=29.2 ,  46.6, 59.6,69.4;g=48.8,  54.2,59.2,70.8 

d=64.0,68.6;e=52.0,59.1,72.4,  79.3; 
f = 64.1, 69.1, 78.5, 78.6;g= 21.6, 29.6,51.5,58.6 

NdOHCO, polyhedron around Nd(1) a = 2.6; b = 32.3, 48.7; c = 63.8, 63.8, 71.6, 74.0; CiC One bidentate Distorted MSAP 25 

CsU,F,, a =  7.6; b =  42.0 ;e=  67.3, 75 .0 ;d= 18.4, 59.1; C, None Distorted MSAP 26 

NdOHCO, polyhedron around Nd(2) a = 1.1; b = 31.6, 54.4; c = 64.7, 65.3, 74.2, 75.0; 25 

NdOHCO, polyhedron around Nd(3) a = 45.7; h = 2.5, ll.O;b c = 43.1, 52.3,69.1, 78.5; 

CIc Two bidentate Neither 

C, Two bidentate Neither 25 

a Two of the three capping atoms were identified differently in the original description. See Figure 6 and the text. Partial occupancy 
by cations. 

the C-C edges and the D-D edge are four sided. 
Although this polyhedron was known at least by 1961 it has 

received little attention. Recently, Bandurkin and 
DzhurinskiiZ8 have compiled a list of structures which contain 
this polyhedron although they did not specify which criteria 
they used in order to differentiate between it and the other 
polyhedra. Also they claimed that the polyhedron had been 
named the bicapped dodecahedron by some authors. This 
statement does not seem to be consistent with the structural 
papers reporting on ten-coordinate polyhedra or with the 
original discussion of the bicapped dodecahedron by 
Muetterties and Wright." The new polyhedron is derived from 
the Hoard dodecahedron and has 14 faces. An appropriate 
appellation from the classical Greek is then decatetrahedron 
(DTH). 

The geometries of the BSAP and the DTH were determined 
using the algorithm of Claxton and B e n ~ o n ~ , ~  for several values 
of n. Also the geometry of both polyhedra were determined 

Figure 10. Edges of the bicapped square antiprism. 

using rigid spheres in place of atoms at the vertices, Le., the 
n = CQ case. The edge lengths and 6 angles for n = 1,6,  and 
0) are given in Tables V and VI, respectively. The edges are 
labeled in Figures 10 and 11. For the DTH, with n = CQ, the 
a edge, the f and g edges, the h edge, the i edge, the j and k 
edges, and the I edge were all made equal. For the BSAP, 
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Table V. Edge Lengths of Ten-Coordinate Polyhedra 

B. E. Robertson 

D T H ~  - B S A P  
Edge n = l  n = 6  n = -  n = l  n = 6  n = -  

a 1.082 1.098 1.082 1.133 1.137 1.000 
b 1.074 1.071 1.082 1.171 1.154 1.297 
c 1.282 1.279 1.287 1.171 1.154 1.297 
d 1.282 1.279 1.287 1.154 1.147 1.414 
e 1.082 1.098 1.082 1.154 1.147 1.414 
f 1.082 1.098 1.082 1.089 1.084 1.000 
g 1.074 1.071 1.082 1.089 1.084 1.000 
h 1.074 1.071 1.082 1.056 1.060 1.000 Figure 11. Edges of the decatetrahedron. 
i 1.282 1.279 1.287 1.311 1.311 1.000 
j 1.074 1.071 1.082 1.059 1.070 1.000 
k 1.082 1.098 1.082 1.059 1.070 1.000 
1 1.082 1.098 1.082 1.058 1.080 1.000 
m 1.282 1.279 1.287 1.497 1.513 1.414 

a Edges are defined in Figure 10. Edges are defined in 
Figure 11. 

Table VI. S (deg) for Ten-Coordinate Polyhedra 

BSAP DT H 
~ __- 

Edge n = l  n = 6  n = -  n = l  n = 6  n = -  Figure 12. Schematic representation of general ten-coordinate - 
polyhedron with two capped square faces. 

a 56.4 56.2 56.8 49.2 48.2 81.8 
b 56.5 56.3 56.8 43.2 43.3 47.5 
c 30.6 30.9 29.8 43.2 43.3 47.5 
d 30.6 30.9 29.8 46.2 45.8 38.0 
e 56.4 56.2 56.8 46.2 45.8 38.0 
f 56.4 56.2 56.8 54.9 54.6 57.7 
g 56.5 56.3 56.8 54.9 54.6 57.7 
h 56.5 56.3 56.8 65.9 65.8 70.1 
i 30.6 30.9 29.8 26.5 27.0 38.9 
j 56.5 56.3 56.8 68.5 68.9 54.7 
k 56.4 56.2 56.8 68.5 68.9 54.7 
1 56.4 56.2 56.8 77.2 78.1 70.5 
m 30.6 30.9 29.8 0.0 0.0 0.0 

the b, g, h, and j edge and the a,  e, f, and k edges were all 
made equal. For the BSAP both the edge lengths and 6 angles 
are not monotonic in n but change very little over the entire 
range 1 I n I 00. For the DTH, however, the variations are 
much larger. This seems to be related to the low point 
symmetry (C2J of the DTH. Also for the n = m case, several 
choices are possible for sets of symmetry-related edges that 
will be forced to be equal and each choice leads to quite 
different polyhedra. The sets which were used give the results 
closest to those from the repulsive potential method. 

Both polytopes and the polyhedron intermediate between 
them are conveniently represented as in Figure 12. The 
symmetry of the intermediate polyhedron is C2 with the 
twofold rotation axis passing through the centers of the a and 
1 edges. The new edges formed in the generation of the DTH 
from the DDH (the h edges), the a edge and the edges which 
formed the remaining trapezoid of the DDH used to generate 

the DTH, are emphasized in Figure 12. 
In going from the BSAP to the DTH, the m edges, which 

are a member of the set joining the upper and lower squares 
of the BSAP, become diagonals of the four-sided faces in the 
DTH. Hence, 6, goes to zero for the latter polyhedron and 
is therefore an appropriate choice as a 6' angle. We shall also 
include 6, because it is shared by two faces which become parts 
of four-sided faces in the DTH, and for the more realistic 
values of n, it is the 6 angle which shows the second largest 
change, after 6, between the BSAP and the DTH. 

It is perhaps instructive to observe that if the a edge of the 
DTH is rotated ~ / 2  about a line through its center and the 
center of the polyhedron, we have, after a small movement of 
the h edges, a bicapped square prism. 

Table VI1 gives a short list of ten-coordinate polyhedra 
selected from the literature. Two polyhedra, that in 
U(OCOCH3)429 and the polyhedron around the La( 1) atom 
in the structure of La2(C03)3.H20,27 based on the and 6, 
values, are clearly better described as BSAP. The general 
degree of correspondence, however, between all the 6 angles 
of the sample polyhedra and the reference BSAP, for any value 
of n, is not good. Two other polyhedra in Table VII, that in 
NaTh(C03)5-12H2030 and the polyhedron around the La(2) 
atom in La2(C03)3.H20,27 are from their 6,  and 6, values, 
clearly best described as DTH. Again, the overall agreement 
with the data for the reference DTH in Table VI is not good. 

The polyhedron in Na6Th(C03)5.12H20 has a new edge 
which replaces one of the m edges. Of the two possible di- 

Table VII. Ten-Coordinate Polyhedra ---- ~ _ _ _ _ _  
Point 
sym- 
metry Chelation Type Ref 

U(OC0CH 3)  C, 29 

La, (CO 3)  3. H, 0 a = 6 2 ; b = 4 7 ; c =  3 7 ; d = 3 2 ; e = 5 6 ; f = 4 4 ; g = 5 9 ; h = 6 7 ; i = 4 4 ;  C, Twobidentate BSAP 27 

Na6Th(CO,),.12H,O a = 69.4; b = 40.4, 44.8; c =  44.4, 45.9; d = 27.9, 31.5; e = 39.9, C, Five bidentate DTH 30 

h,(CO3)3'H,O 27 

Ce(C0,),(C(NH,)3),~4H,0 a = 72.0; b = 45.3; c = 39.8, 41.9; d = 26.8, 30.9; e = 44.1, 45.5; C, Five bidentate Neither 31 

-- Compd Dihedral angles (S), deg 
-___- 

a = 46; b = 48; c = 33; d = 46; e = 58; f = 4 7 ; g =  44; h = 66; i =  40; Two bidentate BSAP 
j =  63; k =  6 2 ; l =  5 1 ; m =  18 

j = 47; k = 59; 1 = 60; m = 21 

43.0; f = 49.3, 65.2;g= 63.4, 64.8; h = 63.4, 72.9; i =  36.3, 
39.4;j= 53.9, 55.3;k= 57.0,60.6; E =  83.5; m = 3.9; n = 8.8a 

a = 66; b = 38; c = 43; d = 39; e = 38; f = 49;g = 57; h = 77; i = 48; 
j = 56; k = 65; 1 = 78; m = 0 

f =  50.7, 65.7;g= 60.7, 62.2; h = 65.8, 66.7; i =  35.1, 43.2; 
I =  75.8; rn = 6.3, 20.9 

polyhedron around La(1) 

C, Three bidentate DTH 
polyhedron around La(2) 

a See text and Figure 13. 



Coordination Polyhedra with Nine and Ten Atoms 

Figure 13. Schematic representation of the polyhedron in Nas- 
Th(CO3)y12HzO. 

agonals which can arise in the four-sided faces of the DTH, 
the one that appears in this case is not the one that could 
become an edge of a BSAP. This situation is entirely 
analogous to the creation of the h edges in the third polyhedron 
of NdOHC0325 in the discussion of nine-coordination. 
Therefore, as illustrated in Figure 13, the m edge disappears 
or must be assigned a negative 6. 

The remaining ten-coordinate polyhedron in Table VII, from 
Ce(C03)5(C(NH2)3)6-4H20,31 has one 6, nearer the value for 
the DTH and one nearer to the value for the BSAP. It is 
perhaps best then not to attempt to assign any label to it. 

As was the case with nine-coordinate polyhedra, the pattern 
of the vertices of the ten-coordinate polyhedra found in nature 
seems to be the same as that of the polyhedron intermediate 
between the two important reference polyhedra, Le., two 
vertices of fourth order separated by two rings of four vertices 
each, with all of the eight vertices in the two rings being of 
fifth order. The exception discussed above in Na6Th(C- 
03)5-12H2030 may still be understood in terms of its deviation 
from the geometry of the polyhedron intermediate between 
the BSAP and the DTH. 

The bond length to the edge length ratio for the somewhat 
artificial DTH with n = m is 1.000. For the equivalent BSAP, 
it is considerably less at  0.924. Furthermore, the DTH has 
two nontriangular faces while the BSAP has none. The 
difference in energy between the two polyhedra is small but 
slightly greater than that between the two nine-coordinate 
polytopes. The BSAP is favored by 0.2%. We might then 
expect that the BSAP should be found more often in nature 
than the DTH. There does not exist to date adequate in- 
formation with which to test this assumption. 
Conclusion 

The descriptions given in the original publications for the 
polyhedra which appear in Tables IV and VI1 were quite often 
different from that which we have arrived at  by the method 
outlined in the preceding sections. Kouba and Wreford' 
encountered a similar phenomenon in their analysis of sev- 
en-coordinate polyhedra. In order to determine if the reduction 
of the original polyhedra to points on a sphere polyhedra led 
to significantly different results than that which would be 
obtained using the unmodified original coordinates, the 6 angles 
were recalculated for all of the polyhedra using the unmodified 
coordinates. In general, polyhedra characterized in this 
manner were not as easily identified with the appropriate 
polytope and two polyhedra developed a pattern of vertices 
as in Figure 6 ,  in addition to the third polyhedron in 
NdOHC03.25 However, none of the polyhedra were changed 
to agree with the description given in the original publication, 
where that description differed from ours. 

Descriptions of large coordination number polyhedra based 
only on the inspection of coordinates, stereograms, or ball and 
stick models often lead either to errors or, at  least, to an 
inconsistent terminology and would therefore seem unwise. 
The 6 criterion of Porai-Koshits and Aslanov3 is a sensitive 
and useful device for the identification of polyhedra and its 
use can avoid these problems. 

Inorganic Chemistry, Vol. 16, No. 11, 1977 2741 

It was stated earlier, however, that all polyhedra would not 
necessarily fit into a classification scheme based on their 
similarity to a limited number of polytopes. We are now in 
a position to comment further. Minerals often contain rel- 
atively small ions, in particular alkali ions, which balance the 
charge of other more highly charged ions. It is the ions 
carrying the greater charge which largely determine the 
packing of these structures. Then the singly charged ions often 
show high coordination, including nine- and ten-coordination, 
but the geometry of the coordinating atoms is not strongly 
influenced by interactions between themselves and the singly 
charged central atom. In such cases, as would be expected, 
the analysis discussed here yields results which may have little 
value. 

Another area of crystallographic investigation which involves 
large coordination polyhedra and which has not been con- 
sidered here is that of intermetallic structures. Indeed in such 
structures nine and ten might be considered lower coordination 
numbers. The polyhedra which occur in such structures are 
governed very much by the demands of three-dimensional 
tessellation as well as the interactions which we have been 
considering. We might therefore expect that a larger number 
of polytopes would be required to form the basis of a discussion 
of such polyhedra. 

We have restricted ourselves to polyhedra in which the 
central atom and the coordinating atoms bring a strong in- 
fluence to bear on the choice of polyhedral geometry, Le., the 
polyhedra found around the lanthanides and actinides. In such 
cases most but not all nine- and ten-coordinate polyhedra can 
be labeled as being related to one of the four polyhedra 
discussed in the preceding sections even when the distortions 
from such polyhedra are large. For both nine- and ten-co- 
ordinate polyhedra, the pattern of the vertices of fourth and 
fifth order is usually consistent with the pattern in the 
polyhedron intermediate between the important polytopes. 
Nevertheless, large distortions also occur which cannot be 
associated with an interconversion between the polytopes. 
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The kinetics of the reaction between Al(II1) and the ions of 5-sulfosalicylic acid, H3L, were investigated in the pH range 
between 1.3 and 4.1 a t  25 “C and at  an ionic strength of 0.1 M. The results were interpreted in terms of three reaction 
paths; some evidence for an additional path, namely, that between A13+ and H2L-, was also obtained, and an upper limit 
of 0.02 M-’ s-’ was estimated for the rate constant. The pathway via A10H2+ and HL2- has the much higher rate constant 
of 2.5 x 103 M-1 s-l , onfirming the enhanced reactivity of the hydrolyzed cation. ‘Two other pathways, involving A10H2+ 
+ H2L- and A13+ + HL2-, respectively, have exactly the same pH dependence. If the rate constant of the former path 
is assumed to be calculable from the rate of similar reactions, then that of the latter becomes - 1.5 M-’ SK’, higher than 
normal for the charge type in question but not significantly so. This result is discussed in terms of “internal hydrolysis”. 
N o  retarding influence of the internal hydrogen bond was observed, nor was there any sign of rate-determining ring closure. 
The results were obtained by the stopped-flow technique or by following the reaction spectrophotometrically with the aid 
of a recorder. 

Introduction 
The mechanism of the formation of labile complexes is by 

now well established. According to the Eigen mechanism’ the 
observed rate constant equals Kosk*, where KO, is an outer- 
sphere association constant and k* the first-order constant for 
the rate at which the ligand present in the outer sphere changes 
places with a water molecule in the inner coordination sphere 
of the metal ion. 

For some labile metal ions which undergo strong hydrolysis 
the mechanism is complicated by the labilizing effect of OH- 
on the remaining water molecules in the inner coordination 
sphere2 and by the possibility of “internal hydrolysis” when 
the metal reacts with the anion of a weak acid.* Whereas these 
problems have been investigated and discussed in detail for 
Fe(III),3 comparatively few data4-9 are available for Al(II1) 
which has the drawback of forming much weaker complexes 
and of exhibiting no absorbance in an accessible wavelength 
range. 

Additional data on systems involving Al(II1) seemed de- 
sirable in order to get some insight into the role of the hy- 
drolyzed species. 

Using pH indicators to monitor the reaction, we have not 
been able to detect the formation, to a significant extent, of 
a complex between Al(II1) and acetic acid, in a range of pH 
and concentration where the complications arising from 
polymerization and further hydrolysis can be neglected. 

For the present investigation, we therefore chose the che- 
lating ligand 5-sulfosalicyclic acid which we shall abbreviate 
as H3L. The reaction can be monitored spectrophotomet- 
rically, owing to the difference in absorbance between the 
complex and the free ligand. The ion H2L- is the anion of a 

strong acid, and the ion HL2- that of a moderately strong acid 
(pK = 2.4). 

Experimental Section 
Materials. An acidified stock solution of A1(C104)3d3H20 was 

prepared from Fluka “purum” salt and perchloric acid (Merck). The 
metal ion concentration was determined by direct titration with EDTA 
in the presence of Cu2+ using PAN as an indicator.” 

Stock solutions of the 5-sulfosalicylic and perchloric acids were 
prepared and were titrated with C02-free sodium hydroxide solution. 

The ionic strength was 0.1 M, regulated by the addition of sodium 
perchlorate (Fluka puriss.). 

Instruments. The pH of the solutions was measured with a digital 
pH meter (Radiometer PHM52) having an accuracy of h0.005 unit 
of pH. All spectrophotometric measurements were carried out with 
a Hilger-Gilford spectrophotometer. 

Kinetic measurements in the higher pH range were carried out by 
the stopped-flow technique, using an Aminco-Morrow apparatus. 
Oscilloscope traces were analyzed by transferring the data to punched 
cards by means of a magnifying manual trace-follower coupled to 
an analog to digital converter and processing the cards in a CDC 
computer. 

In the lower pH range the reactions were so slow that they could 
be followed with the aid of our spectrophotometer. Its output measures 
directly the optical density and was recorded on a Honeywell recorder. 

At pH 22.0 formation rates were measured by mixing suitable 
solutions of Al(II1) and ligand. At lower pH the degree of com- 
plexation is very low; therefore, decomposition rates were measured 
by mixing the complex with perchloric acid solution. At pH 2.0 both 
methods were employed and yielded identical results. 

and 5.8 X M and was always much higher than that of the ligand, 
b, which was lo4 to 2 X lo4 M. The formation of complexes in which 
the ratio of ligand to metal ion is higher than unity can therefore be 

The concentration of aluminum, a, was varied between 1.0 X 




